个人简介

您现在所在的位置是: 首页 > 研究队伍 > 固定人员 > 刘忠文教授课题组 > 个人简介

 

刘忠文教授

教授,博士生导师,陕西师范大学,化学化工学院,2006.09年至今

教授,南京工业大学,化学化工学院,2003.07 2006.08

访问教授,日本北九州市立大学,国际环境工学部,2005.07 2005.10

博士后,日本北九州市立大学,国际环境工学部,2003.09 2005.06

KISTEP Fellow,韩国化学研究所,2001.01 2002.07

项目负责人,深圳市比亚迪实业有限公司,1997.09 2000.12

工学博士,中国科学院山西煤炭化学研究所1994.09 1997.08

理学硕士,中国科学院山西煤炭化学研究所1991.09 1994.06

陕西师范大学应用催化研究中心负责人(2015

教育部长江学者奖励计划特聘教授(2014

“合成气中碳高效转化重大基础研究陕西省重点科技创新团队带头人(2013

教育部“新世纪优秀人才支持计划”(2008

电话:029-81530801

E-mail: zwliu@snnu.edu.cn

中国稀土学会催化专业委员会委员,《Journal of Applied Chemistry编委,《工业催化》编委会副主任,《陕西师范大学学报》(自然科学版)副主编。

C1化学化工基础及应用基础研究:

1. 合成气选择性制液体燃料

2. 甲烷及含氧化合物重整制合成气;

3. 二氧化碳氧化转化的分子活化机制及资源化利用;

4. C1相关重要精细化学品合成的绿色工艺及高效催化剂。

长期从事C1化学化工基础及应用基础研究工作,对甲烷重整制合成气、费-托(FT)合成及CO2活化、转化及利用等反应体系进行了深入研究,在负载金属及氧化物等催化剂设计、制备、表征分析及催化反应的稳态和动态研究方法及实验技术、催化剂表面探针反应技术等方面具有较为深厚的研究积累。主持国家自然科学基金重点项目、面上项目、陕西省重点科技创新团队项目、企业委托课题等在研项目十余项。2006年以来,在Ind. Eng. Chem. ResAppl. Catal. A&BChem. Mater.Energy & Fuels等本领域主流学术期刊发表研究论文60余篇,申请中国发明专利33件,其中授权19件,多次应邀在国际学术会议作邀请/主旨/大会等学术报告。获2010年(第二)、2015年(第一)陕西省科学技术奖二等奖等奖励。

1. 国家自然科学基金重点项目,名称:二氧化碳氧化转化的分子活化机制及资源化利用的关键科学问题研究,直接经费:294万元,执行时间:2017.01 2021.12负责人

2. 长江学者奖励计划,经费:300万元,执行时间:2015.01 2019.12,负责人

3. 国家自然科学基金面上项目,名称:二氧化碳氧化乙苯脱氢高效钒基催化剂构筑及反应机理研究(21376146),经费:80万元,执行时间:2014.01 2017.12负责人。

为本科生讲授《工业催化》、化学前沿讲座、《化学学科导引》等课程,为研究生讲授《化学反应工程

1. One-step Green Approach for Synthesizing Highly Ordered Pillaring Materials in Supercritical Carbon Dioxide (Applied Clay Science 124–125 (2016) 137–142)

The intercalation of guest molecules into layered materials is an important strategy to develop multifunctional hybrid nanocomposites and porous materials. The unique mesoporous structure and the intrinsic acidity of metal oxide intercalated porous clay heterostructure (PCH) make it a promising catalytic material. In contrast to the current synthesis methods of PCH that have complex procedures and structure-controlling difficulties, a novel one-step approach with supercritical CO2 (scCO2) as medium was invented using montmorillonite (MMT) as the host matrix and cetyltrimethylammonium bromide as the structure-directing agent (SDA). In this simple and efficient approach, the high diffusivity of scCO2 ensures the facile transportation of cationic SDA into the clay interlayer via ion exchange, which eliminates a requirement for the high solubility of a SDA in scCO2. As a result, the co-assembly of the SDA and the oxide precursor controlled in the MMT interlayer region leads to the highly ordered PCH. Furthermore, this unique approach provides a general technique to synthesize multifunctional intercalation compounds.

2. Insights into CeO2-modified Ni–Mg–Al oxides for pressurized carbon dioxide reforming of methane (Chemical Engineering Journal 259 (2015) 581–593)

The mixed oxide of NiO, MgO, and Al2O3 (NMA) with a MgO/Al2O3 molar ratio of 3 was prepared from the hydrotalcite-like precursor, and ceria was introduced into NMA with Ce/Al molar ratios between 0.1 - 1.0 via the co-precipitation (NMACe) and the incipient impregnation (Ce/NMA) method, respectively. The NMACe and Ce/NMA were comparatively investigated to reveal the impact of ceria on NMA for carbon dioxide reforming of methane (CDR) under severe conditions. All of the catalysts were highly active for the pressurized CDR. On the contrary, a significant impact of the content and introduction method of CeO2 on the catalytic stability was observed. Thus, the calcined, reduced, and/or used catalysts were systematically characterized by spectroscopic and adsorption techniques. Results indicate that the H2-TPR pattern of NMA was significantly influenced by the addition of CeO2, the extent of which is dependent on its content and introduction method. As a result, the degree of reduction and dispersion of Ni were clearly varied for different catalysts. Although the (111) planes of cubic CeO2 were preferentially exposed over all of the catalysts, the content of Ce3+ over Ce/NMA was apparently higher than that over NMACe, and the appropriate interactions between Ni and NMA were achieved over Ce/NMA with a Ce/Al ratio of 0.5. Because of the inhibited coke deposition, the alleviated graphitization of the deposited coke, and the delayed sintering of Ni, Ce/NMA with a Ce/Al ratio of 0.5 showed highly active and stable performance for the titled reaction under highly demanding operation conditions.

3. Copper-catalyzed coupling of indoles with dimethylformamide as a methylenating reagent (Adv. Synth. Catal. 2016, 358, 539 – 542)

Copper catalyzed C-H activation of indole as an efficient and facile catalytic protocol for synthesizing 3,3’-diindolylmethane (DIM) and its derivatives is presented using N,N-dimethylformamide (DMF) as a carbon source and tertbutylhydroperoxide (TBHP) as an oxidant with an excellent regioselctivity and good yield.